The kinetic reduction of Cr(VI) by yeast Saccharomyces cerevisiae, Phaffia rhodozyma and their protoplasts.
نویسندگان
چکیده
Chromium in the sixth oxidation state may easily penetrate cellular membranes via non-specific sulfate transporters due to its tetrahedral symmetry (high similarity to SO4(2-) and HPO4(2-)). This feature makes chromium a toxic and hazardous pollutant responsible for the deterioration of midland water quality. The aim of the study was to evaluate the capacity of two yeast species - Saccharomyces cerevisiae and Phaffia rhodozyma - and their protoplasts to reduce Cr(VI) to lower oxidation states. The study also deals with the behavior of the yeasts upon the presence of elevated sulfate ions as a competitive inhibitor of chromate transport by the sulfate transporters. The chromate-reducing activities were monitored by determination of Cr(V) free radical form with the use of L-band (1.2 GHz) EPR (electron paramagnetic resonance) spectroscopy. It was observed that both of the studied yeast strains exhibited the ability to reduce Cr(VI) applied at 4 mM. The cells of P. rhodozyma showed about 3.5 times higher reduction than S. cerevisiae. The reduction efficiency was significantly improved when the protoplasts of both strains were used and reached 100% in the first 10 minutes of the reduction process which suggests that the cellular wall may have a notable influence on the uptake and/or inhibition of chromium reduction process. The reduction effect of P. rhodozyma cells and protoplasts may be associated with the more sufficient production of metabolites (such as glutathione and cysteine), which may also be responsible for the increased tolerance of the strain towards high concentrations of toxic chromium.
منابع مشابه
Structural and phylogenetic analysis of the actin gene from the yeast Phaffia rhodozyma.
The gene coding for actin from Phaffia rhodozyma was cloned and sequenced. The Phaffia actin gene contains four intervening sequences and the predicted protein consists of 375 amino acids. The structural features of the Phaffia actin introns were studied and compared with actin introns from seven fungi and yeasts with ascomycetous and basidiomycetous affinity. It was shown that the architecture...
متن کاملIsolation and Identification of Yeast Strains Capable of Producing Single Cell Protein from Whey in Co-Cultures with Saccharomyces cerevisiae
In this study, twenty-five whey samples collected from dairy industries in the city of Isfahan. The sampleswere cultured on malt extract broth (MEB) and yeast extract glucose chloramphenicol agar (YGCA) media.Eleven yeast strains (designated M1 to M11) were isolated from the culture. The strains were identified bytheir morphological and physiological properties. Betagalactosid...
متن کاملSaccharomyces Cerevisiae as a Biocatalyst for Different Carbonyl Group under Green Condition
In this researchsaccharomyces cerevisiae (baker’s yeast) was used as a cheap, readily accessible, selective, efficient, and green bio-catalyst in a chemo selective reduction of carbonyl group to hydroxyl group. In this green procedure three substrates e.g. (3-(3-nitrophenyl)aziridin-2-yl)-1-phenyl-methanone, pyruvate ester, and 2-acetyl-γ-butyrolactone were r...
متن کاملSelection of Astaxanthin-Overproducing Mutants of Phaffia rhodozyma with beta-Ionone.
beta-Ionone, an end ring analog of beta-carotene, inhibits astaxanthin production in the red yeast Phaffia rhodozyma. Astaxanthin-overproducing mutants of this yeast are easily spotted on beta-ionone-containing yeast malt agar plates. beta-Ionone appears to block astaxanthin synthesis at the beta-carotene level.
متن کاملKinetics Studies Impact of Initial pH and Addition of Yeast Saccharomyces cerevisiae on Biogas Production from Tofu Wastewater in Indonesia
The purpose of this work was to study the effect of initial pH and yeast Saccharomyces Cerevisiae on biogas production from tofu wastewater (TW). The initial pH was varied in ranging of 5 – 9 in substrate without yeast (T5-T9) and with yeast (TY5-TY9). The results showed that optimum initial pH was 8. The maximum biogas was resulted in T8 (275 mL) and TY8 (421 mL). Yeast addition increased tota...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica Polonica
دوره 60 4 شماره
صفحات -
تاریخ انتشار 2013